Second Order Differential Equations

Anton 14.1

Linear Independence

Two functions are linearly dependent if one is a constant multiple of the other.

Examples:
(1) $f(x)=\sin x$
(2) $f(x)=\sin x$

winearal dependent
$g(x)=x \sin x$
LINEALAY INDEPENDEAT

Second Order Differential Equations:

Equations where the highest derivative is $y^{\prime \prime}$

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

Homogeneous: $\quad r(x)=0$

$$
\therefore y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Nonhomogeneous: $r(x) \neq 0$

Theorem

If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

then
is the general solution of the diff. eq.
y_{c} is a linear combination of y_{1} and y_{2}

Constant Coefficients: $\quad y^{\prime \prime}+p y^{\prime}+q y=0$
What could we try as a solution?

Two Distinct Real Roots: m_{1} and m_{2}
$\therefore y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are solutions.

The general solution to the differential equation is a linear combination of y_{1} and y_{2} :

$$
\therefore y_{c}=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Example: $y^{\prime \prime}-y^{\prime}-6 y=0$

One Double Root: $m_{1}=m_{2}=m$
$\therefore y_{1}=e^{m x}$ and $y_{2}=x e^{m x}$ are solutions.

The general solution to the differential equation is a linear combination of y_{1} and y_{2} :

$$
\therefore y_{c}=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Complex Roots: $m_{1}=a+b i, m_{2}=a-b i$
$\therefore y_{1}=e^{(a+b i) x}$ and $y_{2}=e^{(a-b i) x}$ are solutions. $e^{a x+b i x}$
$e^{a x} \cdot e^{b i x}$
An equivalent version of y_{c} that is more commonly used is:

$$
y_{c}=e^{a x}\left(c_{1} \cos (b x)+c_{2} \sin (b x)\right)
$$

Example: $\quad y^{\prime \prime}+y^{\prime}+y=0$

$$
\begin{aligned}
& \text { Example: } y^{\prime \prime}-y=0 \quad y(0)=1, y^{\prime}(0)=0 \\
& m^{2}-1=0 \\
& m= \pm 1 \\
& y_{c}=c_{1} e^{x}+c_{2} e^{-x} \Rightarrow 1=c_{1} e^{0 x}+c_{2} e^{0 x} \Rightarrow 1=c_{1}+c_{2} \\
& y_{c}^{\prime}=c_{1} e^{x}-c_{2} e^{-x} \Rightarrow 0=c_{1} e^{0 x}-c_{2} e^{0 x} \Rightarrow \frac{0=c_{1}-c_{2}}{1=2 c_{1}} \\
& y=\frac{1}{2}\left(e^{x}+e^{-x}\right)=\cosh (x) \quad \begin{array}{ll}
c_{1}=1_{1} \\
c_{2}=1 / 2
\end{array}
\end{aligned}
$$

Classwork:
Anton 14.1 \# 10, 18
Homework:
Anton 14.1 \# 1-23 odd

